1 题目描述
给定一个非负整数num,对0 ≤ i ≤ num区间内每个整数,计算其对应的二进制数中1的个数,结果用数组返回。
例子1:
输入:2
输出:[0, 1, 1]
例子2:
输入:5
输出:[0,1,1,2,1,2]
题目出处:
https://leetcode.com/problems/counting-bits/
2 解决思路
2.1 常规算法
func decimal2Binary(n int) string {
b := ""
for {
// remain
r := 0
n, r = n>>1, n%2
b = strconv.Itoa(r) + b
if 0 == n {
return b
}
}
}
func countOne(s string) int {
c := 0
for _, i := range []rune(s) {
if '1' == i {
c++
}
}
return c
}
func countBits(num int) []int {
s := make([]int, num+1)
for i := 0; i <= num; i++ {
s[i] = countOne(decimal2Binary(i))
}
return s
}
2.2 改进思路
避免对递增数组中的每个数值作计算,将4位看做一个单元,单元内0-15的二进制数中1的个数是确定的。这样采用16进制去计算,给定数值,每除以16所得的余数就是落在该单元内的数值,直至被除数为0,将每个单元中1的个数累加既可。
3 golang实现代码
https://github.com/leileiluoluo/leetcode/blob/master/338_Couting_Bits/test.go
func countBinaryOneInHexUnit(n int) int {
countOne := 0
switch n {
case 0:
countOne = 0
case 1, 2, 4, 8:
countOne = 1
case 3, 5, 6, 9, 10, 12:
countOne = 2
case 7, 11, 13, 14:
countOne = 3
case 15:
countOne = 4
}
return countOne
}
func countBinaryOne(n int) int {
// remain
r := 0
countOne := 0
for n > 0 {
n, r = n>>4, n%16
countOne += countBinaryOneInHexUnit(r)
}
return countOne
}
func countBits(num int) []int {
s := make([]int, num+1)
for i := 0; i <= num; i++ {
s[i] = countBinaryOne(i)
}
return s
}
4 基准测试
4.1 测试代码
package main
import (
"testing"
)
func BenchmarkCountBits(b *testing.B) {
for i := 0; i < b.N; i++ {
countBits(100000000)
}
}
4.2 测试结果
$ go test -test.bench=".*"
goos: darwin
goarch: amd64
pkg: github.com/leileiluoluo/test
BenchmarkCountBits-4 1 4618146566 ns/op
PASS
ok github.com/leileiluoluo/test 4.670s